

This book is dedicated to everyone who has ever changed my thinking. Thank you for not letting me stay as I was.

To those who have ever been challenged by mathematics; fear not, for this is as it should be. Challenge strengthens us, so let us

ALWAYS be prepared to admit that SOMETIMES we don't know the answer, and NEVER give up trying.

After all, it is through our persistence that we will succeed.

AJ, 2012

Front Cover design by the very talented Niamh McHale, age 10.

# ALWAYS, SOMETIMES, NEVER ?

© Andrew Jeffrey, 2012

### CONTENTS

| Introduction                                              | .5 |
|-----------------------------------------------------------|----|
| Getting to know the <b>Always, Sometimes, Never</b> cards | 6  |
| In the classroom: how To Use Always, Sometimes, Never     | .8 |

#### The Cards

| Odd and Even Numbers (I)   | 9  |
|----------------------------|----|
| Odd and Even Numbers (2)   | 11 |
| Odd and Even Numbers (3)   | 13 |
| Dice                       | 15 |
| Properties of Polygons (1) | 17 |
| Properties of Polygons (2) | 19 |
| Factors and Multiples (1)  | 21 |
| Factors and Multiples (2)  | 23 |
| Percentages                | 25 |
| Averages                   | 27 |
| Measures                   | 29 |
| Prime Numbers              | 31 |
| Chestnuts                  | 33 |
| Lucky Dip (I)              | 35 |
| Lucky Dip (2)              | 37 |

#### Introduction

Every so often an idea comes along that is a valuable addition to the bank of resources that exist to support the teaching and learning of mathematics.

The first time I ever saw a set of **Always, Sometimes, Never** cards, I knew that this was just such an idea. I started to look around for sets of these to use, and was surprised to discover that nobody had ever created a book (*or better still, an electronic book*) containing sets of cards for several different areas of the primary mathematics curriculum.

So here it is. After months of research, I have put together what I believe may be the first complete book of **Always, Sometimes, Never** resources available.

To make **Always, Sometimes, Never** as user-friendly and cost-effective as possible, not only do you receive the book in .pdf format, but also a license to make unlimited photocopies of any of the cards for use *in your own school* or institution.

I hope you will enjoy using these as much as I have enjoyed creating them, and I am confident that your children will look forward to playing **Always**, **Sometimes, Never** with enthusiasm!

Andrew Jeffrey, 2012

5

#### Getting to know the Always, Sometimes, Never cards

The cards are arranged in sets of 6. Each card bears a statement based on an area of the mathematics curriculum. Sometimes there is more than one set of cards for each topic, broadly differentiated into levels of difficulty. This allows you to cater more easily for a range of abilities within your class. Of course there is nothing to stop you combining sets of cards into one large set if you wish! Sets are graded as L (Lower) M (Middle) and H (Higher). Please note that this is simply a rough indication of *relative* difficulty; it should not be assumed that children working at similar National Curriculum levels will find the same things easy of course, as it depends entirely on their particular understanding of a particular point, and on any misconceptions they may have picked up.

The main aim of the activity is for children to decide whether each statement is **always**, **sometimes** or **never** true, and to sort the statements into groups.

Here is an example of each type:



Most sets of cards will have examples of all three categories but this should NOT be assumed – this means that children cannot reason (spuriously) that 'we have loads of '**sometimes'** and '**always'** so this last one must be a '**never'**. The right-hand pages contain the answers, together with a brief reason.

Perhaps the *real* value of these activities comes from the reasoning and communication that is necessary in order to complete the task successfully, so it is recommended that this activity is <u>not</u> seen as a task to be tackled individually in silence.

This is not to say it cannot be done by individuals FIRST - they could all have a sheet, note down their own thoughts, then collate and try to converge on an agreed answer. This is a very strong process to support learning, and the next page gives details of several more powerful ways to use this activity.

I think highly enough of this to use it on virtually every training day I offer for schools, and there aren't many things about which I can make such a claim!

#### Ambiguity

In some cases, the answer will depend on user-definitions; for example 'numbers' might be taken to mean 'whole' or 'positive'. Where there is any ambiguity there is value in deciding with the group beforehand which definition should be used.

As a general guiding principle, I suggest that we contain ourselves to REAL numbers rather than IMAGINARY ones, in which case (for example) a card with 'square numbers are negative' could safely be put into 'NEVER'.

The case of zero as a real number comes up several times - be warned!

Working with A-level students of course we would dispense with this principle!

Let's get stuck in...

#### In the classroom: how to use Always, Sometimes, Never

One of the great things about **Always Sometimes Never** is the flexibility it offers. Here are a few effective ways to do so:

- a) Whole class (1): Print out large versions of the cards to hold up, or display them on an IWB. For each statement, discuss it as a class, then decide in which category the statement belongs.
- b) Whole Class (2): Display the cards as in (1), but this time children work in pairs or small groups to decide on their answer. Each pair or group should then vote by holding up a pre-printed card or whiteboard showing a large A, S or N card.
- c) Whole Class (3): The statements are printed out onto A4 cards and each group is given a card. Three areas of the classroom are allocated to represent 'Always' Sometimes' and 'Never' and children should decide where to stand. To avoid congestion, only one person from each group needs to take the card to their chosen location. More than one group of children can have the same statement, a leading to some high-quality debates. It is sometimes interesting to give ALL the children the same statement!
- d) **Pairs :** Give each pair of children a set of cards. They must discuss the statements and sort the cards into three piles. Once each pair has finished, they can discuss their answers with another pair sitting nearby. They can change their answers but only if they can give a convincing reason why they have done so.
- e) **Groups:** Distribute a set of cards to a group of children they must read out their card to the rest of their group, and the group must then decide in which of the three categories it belongs. It can only be placed once EVERYONE agrees.
- f) **As a summary** to assess learning. For example, if you have been working on percentages, you might want to generate a set or statements that refer specifically to that topic and ask children to sort and discuss the statements.
- g) **Independently**: Cut out the statements and stick their solution card (on the facing page) to the back. The cards can then be used independently as a pack of cards by individual children, as they are self-correcting.

However you use the cards, the key element in all the activities is the REASONING that children must do, both internally and aloud, as they seek to justify their decisions.

These are just a few of the many ways to use the cards, but you may well think of more (*post-its? working walls?*) as you become more familiar with the cards. Enjoy!

# Odd and Even (1) Whole numbers **Even numbers end** ending in zero are in zero even Half an odd Odd numbers end number is a whole in 1,3,5,7 or 9 number | |-----Half an even Twice a whole number is a whole number is even number

Always, Sometimes, Never?

### Odd and Even (1)

| SOMETIMES                                                                             | ALWAYS                                                                                          |
|---------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 2,4,6,8 don't, but 10 does.<br>12,14, 16, 18 don't, but 20<br>does. And so on.        | They are all multiples of 10,<br>which is in the 2x table, and<br>therefore all even.           |
| ALWAYS                                                                                | NEVER                                                                                           |
| 1,3,5,7,9,11,13,15,17,19,21,23<br>etc. All end in one of the odd<br>digits.           | Odd numbers don't divide by<br>2 so half of them will never<br>be a whole number.               |
| ALWAYS                                                                                | ALWAYS                                                                                          |
| Any even number is 2 times<br>a whole number. Halving<br>gets us back to that number. | Twice a number means 'the<br>number times 2', so will<br>always be in the 2x table (or<br>even) |

L

# Odd and Even (2) Μ The sum of an odd Half an even and an even number is an odd is odd number The sum of two Even numbers even numbers is contain the digit 3 odd Even numbers are Half an odd number bigger than odd is an odd number numbers

Always, Sometimes, Never?

# Odd and Even (2)

| ALWAYS                                                                                                                                 | SOMETIMES                                                                                                                       |
|----------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|
| An odd number is an even<br>number plus. Adding this to<br>another even will give a<br>larger even number plus one<br>– an odd number. | Half of 12 is 6<br>Half of 14 is 7.                                                                                             |
| SOMETIMES                                                                                                                              | NEVER                                                                                                                           |
| 24 doesn't<br>34 does.                                                                                                                 | Adding two multiples of 2<br>will give another multiple of<br>2.                                                                |
| SOMETIMES                                                                                                                              | NEVER                                                                                                                           |
| 2 is bigger than 1 but 2 is smaller than 3.                                                                                            | Halving any odd number will<br>not give us a whole number<br>as odd numbers are defined<br>as numbers that DONT<br>divide by 2. |

Μ

| Odd and Even (3)    |         | M         |
|---------------------|---------|-----------|
| Numbers that end in | Numbers | ending in |
| a '3' are odd       | a '4' a | re even   |
| Even numbers end    | Numbers | ending in |
| in a '2'            | a '6' a | are odd   |
| The sum of two odd  | Twice   | a whole   |
| numbers is even     | numbe   | r is even |

(C) Andrew Jeffrey, <u>www.magicmessage.co.uk</u>, 2012

# Odd and Even (3)

| ALWAYS                                                                                                          | ALWAYS                                                                  |
|-----------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------|
| As are numbers that end in<br>1,5,7 or 9                                                                        | As are numbers that end in<br>2,6,8, or 0                               |
| SOMETIMES                                                                                                       | NEVER                                                                   |
| They could also end in 4,6,8,<br>or 0                                                                           | They are always even                                                    |
| ALWAYS                                                                                                          | ALWAYS                                                                  |
| Each odd number is an even<br>number plus one. Take the<br>two 'plus ones' together to<br>make 2: another even! | 'Twice' is the same as 'two<br>times' so it will be in the 2x<br>table. |

| DICE<br>(assume regular 6-sided)                         |                                                                           |  |
|----------------------------------------------------------|---------------------------------------------------------------------------|--|
| If I throw a dice I                                      | If I throw a dice I                                                       |  |
| will get a 7                                             | will get a 6                                                              |  |
| If I throw 2 dice and                                    | If I throw a dice I                                                       |  |
| add them the most                                        | will get a whole                                                          |  |
| likely total is 7                                        | number                                                                    |  |
| 6 comes up less<br>often than other<br>numbers on a dice | if I throw a dice four<br>times I will get 2<br>odd and 2 even<br>numbers |  |

### DICE

# (assume regular 6-sided)

| NEVER                                                                                                                                          | SOMETIMES                                                                                                                                                      |
|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|
| You can only get the<br>numbers 1,2,3,4,5 and 6                                                                                                | All numbers are equally<br>likely so you will get a 6<br>about ½ of the time. The<br>more throws you do, the<br>closer this amount it is likely<br>to be to ½. |
| ALWAYS                                                                                                                                         | ALWAYS                                                                                                                                                         |
| There are more ways to get 7<br>than any other total so it is<br>ALWAYS more likely, though<br>this doesn't mean it will<br>always happen!     | 1,2,3,4,5,6 are the only<br>possibilities and are all<br>whole                                                                                                 |
| SOMETIMES                                                                                                                                      | SOMETIMES                                                                                                                                                      |
| Each number is equally likely<br>to occur, but if you roll a dice<br>lots of times you might get<br>more 6s than 2s (or more 3s<br>or more 5s) | But you might for example<br>get all sixes!                                                                                                                    |

Μ

# **Properties of Polygons (1) Triangles have** Squares are exactly 2 lines of rectangles symmetry

Always, Sometimes, Never?

A polygon has 3 or Polygons have more sides

A polygon has fewer than 1 million sides

curved sides

**Regular polygons** have an even number of sides

# **Properties of Polygons (1)**

| NEVER                                                                                                                         | ALWAYS                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Scalene have none, isosceles<br>have 1, and equilateral have<br>3. There are <u>no</u> triangles with<br>2 lines of symmetry. | Squares are special types of<br>rectangles which have all the<br>sides the same length.                                                 |
| ALWAYS                                                                                                                        | NEVER                                                                                                                                   |
| The fewest number of sides<br>on a polygon is 3 (triangle)                                                                    | To be a polygon, a shape<br>MUST have straight sides<br>which meet at the ends but<br>do not cross, and which<br>contain a single area. |
| SOMETIMES                                                                                                                     | SOMETIMES                                                                                                                               |
| There is no upper limit to the<br>number of sides that a<br>polygon may have.                                                 | Equilateral triangles have 3,<br>for example.                                                                                           |

L

| Properties of Polygons (2)                      |                                                           |  |
|-------------------------------------------------|-----------------------------------------------------------|--|
| Identical<br>quadrilaterals<br>tesselate        | Hexagons are larger<br>than pentagons                     |  |
| Triangles have<br>more than one<br>obtuse angle | A Polygon has the<br>same number of<br>sides as diagonals |  |
| rectangles are<br>squares                       | Rectangles have<br>exactly 2 lines of<br>symmetry         |  |

# **Properties of Polygons (2)**

| ALWAYS                                                                                                                     | SOMETIMES                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| As long as you have a set of<br>identical quadrilaterals it is<br>always possible to arrange<br>them with no gaps. Try it! | Look at these shapes to see why:                                                                                                               |
| NEVER                                                                                                                      | SOMETIMES                                                                                                                                      |
| Since this would give a total<br>of more than 180 degrees<br>which is impossible.                                          | A pentagon is the only<br>polygon that has this<br>property; triangles and<br>quadrilaterals have fewer<br>diagonals, all others have<br>more. |
| SOMETIMES                                                                                                                  | SOMETIMES                                                                                                                                      |
| A Square is a special sort of<br>rectangle that has all its<br>sides equal in length.                                      | Square ones have 4 lines!                                                                                                                      |

Μ

# Μ Factors and Multiples (1) A whole number **Even numbers** greater than 1 has contain the digit 3 at least 2 factors Two multiples of 5 Multiples of 5 end add up to a in a 5 multiple of 10 Square numbers Numbers ending in have an odd 3 are in the 3 times number of factors table

Always, Sometimes, Never?

# Factors and Multiples (1)

| ALWAYS                                                                            | SOMETIMES                                                        |
|-----------------------------------------------------------------------------------|------------------------------------------------------------------|
| 1 and itself (and others<br>unless it is prime.                                   | 32 contains a 3 but 24 does<br>not yet both are even<br>numbers. |
| SOMETIMES                                                                         | SOMETIMES                                                        |
| 5 does, 10 doesn't, etc.                                                          | Works with 15+5 but not<br>20+5                                  |
| ALWAYS                                                                            | SOMETIMES                                                        |
| Factors are in pairs except<br>the square root which is in a<br>pair with itself. | 23 isn't but 33 is.                                              |

Μ

| Factors and Multiples (2)           |                                   | М                                      |
|-------------------------------------|-----------------------------------|----------------------------------------|
| Doubling a number                   | Even num                          | bers in the                            |
| gives a higher                      | 3 times ta                        | able have a                            |
| number                              | facto                             | or of 6                                |
| Multiplying makes<br>numbers bigger | If a nur<br>factor c<br>also a fa | nber is a<br>of 20 it is<br>ctor of 40 |
| The sum of 3                        | Adding a                          | zero to the                            |
| consecutive whole                   | end n                             | nakes a                                |
| numbers is a                        | number                            | 10 times                               |
| multiple of 3                       | laı                               | rger                                   |

# Factors and Multiples (2)

| SOMETIMES                                                                                                                                   | ALWAYS                                                           |  |
|---------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|--|
| Doubling a negative numbers<br>gives a lower number but<br>doubling a positive number<br>gives a higher one. Doubling<br>zero does nothing! | The even multiples of 3 are<br>6,12,18, etc.                     |  |
| SOMETIMES                                                                                                                                   | ALWAYS                                                           |  |
| But multiplying by some<br>fractions or negatives can<br>make numbers smaller.                                                              | Because 20 is itself a factor<br>of 40                           |  |
| ALWAYS                                                                                                                                      | SOMETIMES                                                        |  |
| Try a few numbers to see<br>this works; you could use<br>cubes to figure out why.                                                           | It only works for whole<br>numbers, not fractions or<br>decimals |  |

| Percentages                                                                                      |                          | H                               |
|--------------------------------------------------------------------------------------------------|--------------------------|---------------------------------|
| Finding 10% is the same as dividing by 10                                                        | Finding<br>same as       | 20% is the<br>dividing by<br>20 |
| Increasing<br>something by 10%<br>then reducing it by<br>10% gets back to<br>the original number | 50% of ar<br>the same    | n amount is<br>as halving<br>it |
| Reducing something<br>by 30% is the same<br>as multiplying it by<br>0.7                          | You can<br>than 1<br>som | have more<br>L00% of<br>ething  |

# Percentages

| ALWAYS                                                                                   | NEVER                                                                                           |
|------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|
| 10% means 10 out of 100<br>which is a tenth, hence it is<br>the same as dividing by ten. | 20% means 20 out of 100<br>which is a fifth, hence it<br>means dividing by 5 - not by<br>20.    |
| NEVER                                                                                    | ALWAYS                                                                                          |
| It actually gets back to 99%<br>of the original number,<br>because 1.1 x 0.9 = 0.99      | 50% means half                                                                                  |
| ALWAYS                                                                                   | SOMETIMES                                                                                       |
| As there will be 70% of it left,<br>and this is the same as 0.7                          | If it is a number you can. If it<br>is a finite thing such as a<br>particular person you can't. |

Н

| Averages                                                     |                                         |                                                 | M |
|--------------------------------------------------------------|-----------------------------------------|-------------------------------------------------|---|
| The mean of two<br>numbers is halfway<br>between them        | The me<br>numbe<br>middle o<br>they are | ean of 3<br>rs is the<br>one when<br>e in order |   |
| The median of 4<br>number is a whole<br>number               | The mea<br>mode are<br>nur              | n and the<br>the same<br>nber                   |   |
| The median of a set<br>of numbers is larger<br>than the mode | The mea<br>of numbe<br>than any<br>the  | n of a list<br>rs is large<br>number in<br>list | r |

# Averages

| ALWAYS                                                                  | SOMETIMES                                                                                                              |
|-------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|
| Because this is exactly how<br>you calculate the mean of<br>two numbers | It is but only if they are<br>evenly spaced, i.e. there is<br>the same difference between<br>the numbers.              |
| SOMETIMES                                                               | SOMETIMES                                                                                                              |
| Only if the difference<br>between the two middle<br>numbers is even.    | It would for example work<br>with 1,3,3,5<br>but not with 2,10,10                                                      |
| SOMETIMES                                                               | NEVER                                                                                                                  |
| t is true for 1,1,2,2,2 but not<br>for 2,3,33                           | It must be bigger than the<br>smallest number and smaller<br>than the biggest (unless all<br>the numbers are the same) |

28

Μ

| Measures                                   |                                       | N                                                | / |
|--------------------------------------------|---------------------------------------|--------------------------------------------------|---|
| Angles are between                         | 3 miles                               | uphill is                                        |   |
| zero and 360                               | further th                            | an 3 miles                                       |   |
| degrees                                    | dow                                   | vnhill                                           |   |
| If a has more digits<br>than b, then a > b | If a numk<br>add up<br>number i<br>ta | per's digits<br>to 36, the<br>s in the 9x<br>ble |   |
| Distances measured                         | if a numk                             | per's digits                                     |   |
| in km are further                          | add up                                | to 6, the                                        |   |
| than distances                             | number                                | is in the 3                                      |   |
| measured in cm                             | times                                 | s table                                          |   |

# Measures

| SOMETIMES                                                         | NEVER                                                                                                                     |
|-------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|
| More than a full turn gives<br>angles greater than 360<br>degrees | They are the same distance<br>(but one might feel further if<br>you are walking!)                                         |
| SOMETIMES                                                         | ALWAYS                                                                                                                    |
| 364 >99 but 3.64 < 99                                             | This is known as a<br>'divisibility test' for multiples<br>of 9; in fact it works if they<br>add up to any multiple of 9. |
| SOMETIMES                                                         | ALWAYS                                                                                                                    |
| but 1km < 1.5 million cm                                          | As 6 is double 3.                                                                                                         |

| Prime Number                                                                   | S                                                 | H                                                        |
|--------------------------------------------------------------------------------|---------------------------------------------------|----------------------------------------------------------|
| Prime numbers are<br>odd                                                       | Whole no<br>greater t<br>be m<br>multiply<br>more | on-primes<br>han 2 can<br>ade by<br>ing two or<br>primes |
| Prime numbers over<br>3 are 1 away from a<br>multiple of 6                     | Double a<br>an ever                               | a prime is<br>1 number                                   |
| The square of any<br>prime bigger than 3<br>is 1 more than a<br>multiple of 24 | A prime s<br>rando<br>larges<br>nur               | selected at<br>m is the<br>t prime<br>mber               |

# **Prime Numbers**

| SOMETIMES                                                                                                                                                                                            | ALWAYS                                                                                                                                                     |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|
| All of them are odd EXCEPT the<br>first prime number, 2. This is<br>because all other even numbers<br>can't be prime as they have a<br>factor of 2!                                                  | This is why primes are sometimes<br>called the building blocks of<br>number – you can literally build<br>any non-prime number greater<br>than 2 from them. |
| ALWAYS                                                                                                                                                                                               | ALWAYS                                                                                                                                                     |
| They can't be 2 or 4 away as they<br>would be even. They can't be 3<br>away as they would be multiples<br>of 3. If they are 5 away from a<br>multiple of 6 they must be 1 away<br>from the next one! | Double ANY whole number is even, whether it is prime or not.                                                                                               |
| ALWAYS                                                                                                                                                                                               | NEVER                                                                                                                                                      |
| A prime can either be (6n+1) or<br>(6n-1). Square either of these and<br>subtract 1 and you get an<br>expression with a factor 12 and at<br>least 1 other even factor.                               | Prime numbers go on for ever -<br>there cannot be a highest one., as<br>proved by Euclid in 300BC.                                                         |

Н

# Chestnuts Μ The larger the coin, Adding 10 to an integer changes the the larger the value units figure Dividing makes Rectangles can be numbers smaller cut into squares Adding makes Subtracting makes things smaller things bigger

Always, Sometimes, Never?

# Chestnuts

| SOMETIMES                     | SOMETIMES                             |
|-------------------------------|---------------------------------------|
| A 2p is larger than a 5p      | Only for numbers between<br>-9 and -1 |
|                               | ¦                                     |
| SOMETIMES                     | SOMETIMES                             |
|                               |                                       |
| Sometimes it does not. for    | Not all can, but the ones that        |
| example 0.5 divided by 0.5 is | can are known as 'perfect             |
| 1                             | rectangles'                           |
|                               |                                       |
|                               | SOMETIMES                             |
| SOMETIMES                     | SOMETIMES                             |
| As long as you are adding a   | As long as you are                    |
| nositive quantity             | subtracting a positive                |
| positive quality              | quantity                              |
|                               | quantity                              |
|                               |                                       |
|                               |                                       |

| Lucky Dip (1)        |          | H          |
|----------------------|----------|------------|
| The longer the       | Bar char | ts are the |
| perimeter the larger | best wa  | y to show  |
| the area             | differen | t amounts  |
| Numbers in the 51    | Between  | two whole  |
| times table are      | number   | s there is |
| prime                | always a | nother one |
| Between two          | Betwe    | en two     |
| fractions there is   | decimal  | s there is |
| always another one   | always a | nother one |

(C) Andrew Jeffrey, <u>www.magicmessage.co.uk</u>, 2012

# Lucky Dip (1)

| SOMETIMES                                                                                                      | SOMETIMES                                                                                                                                      |
|----------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|
| Think about cutting a<br>rectangle from the edge of a<br>larger rectangle – longer<br>perimeter, smaller area. | They are useful for showing<br>bigger and smaller amounts<br>but not as good as pie charts<br>for comparing quantities                         |
| NEVER                                                                                                          | SOMETIMES                                                                                                                                      |
| They will all have a factor of<br>3 (and 17, and 51, and<br>possibly others)                                   | Unless they are adjacent<br>integers                                                                                                           |
| ALWAYS                                                                                                         | ALWAYS                                                                                                                                         |
| Can be found, for example,<br>by doubling both numerator<br>and denominator and adding<br>1 to new numerator   | There are an infinite number<br>of decimal places so adding<br>another decimal place to<br>lower number with any non-<br>zero digit will work. |

Н

| Lucky Dip (2)                                                                |                                 | Н                                     |  |
|------------------------------------------------------------------------------|---------------------------------|---------------------------------------|--|
| Decimals can be                                                              | Fractior                        | ns can be                             |  |
| expressed as a                                                               | expres                          | sed as a                              |  |
| fraction                                                                     | dec                             | cimal                                 |  |
| A shape with exactly<br>3 lines of symmetry<br>is an equilateral<br>triangle | The fac<br>number a<br>than its | tors of a<br>are smaller<br>multiples |  |
| 2 numbers that are                                                           | 2 numbe                         | rs that are                           |  |
| not 1 have a                                                                 | not zer                         | o have a                              |  |
| product of 1                                                                 | produc                          | t of zero                             |  |

# Lucky Dip (2)

| ALWAYS                                                               | SOMETIMES                                                                                                                               |
|----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|
| Any decimal is a fraction<br>over a power of 10<br>(10,100,1000 etc) | Those with a denominator of<br>3,6,7 or 9 cannot usually be<br>expressed as a decimal as<br>these are not factors of<br>10,100,100 etc. |
| SOMETIMES                                                            | SOMETIMES                                                                                                                               |
| There are other shapes with<br>3 lines- here is an example           | Or always if you exclude the<br>number itself                                                                                           |
| SOMETIMES                                                            | NEVER                                                                                                                                   |
| e.g. 0.25 and 4                                                      | This is why we can solve<br>quadratics by factorising                                                                                   |

Н

#### ACKNOWLEDGEMENTS

Whoever first talked about standing on the shoulders of giants could well have been referring to this book.

I feel that apart from coming up with a few of my own new interesting ASN statements, I have built on the work of many others in order to compile this set of statements.

As I mentioned in the introduction, while searching the internet for a book of these statements, I discovered that amazingly no such book existed, though there were several books each containing a few excellent examples of the genre. This certainly helped me decide to write this book, but also made me realise that (somewhat irritatingly from my point of view) it was going to be nigh-on impossible to be certain where any particular statement originated, since several similar or identical statements were listed independently in lots of different websites and books.

I have used many of them either in their original or amended form, and am grateful. Even with the statements that I wrote specifically for this book, I found some very similar versions 'out there', and there are probably more than a few examples of genuine independent co-creation. I hope nobody will take offence (think Newton v. Liebnitz).

So, the best that I can hope to do here is simply to thank everyone who has inspired the book, either by their work on this area, or by the statements that they have generously made available on the internet for teachers to draw on.

AJ, January 2012

Below are the three main sources I have used during my research; you may well discover several others. My thanks to to colleagues who have sent me ideas or pointed me in the direction of a few good questions; whether they made it into the final edit or not, I am very grateful to you.

Enjoy!

National Centre for Excellence in the Teaching of Mathematics - www.ncetm.org

ATM bookshop - http://www.atm.org.uk/shop/bookshop.html

National Strategies website - now archived but still with limited access.

In memory of John Voller 1936 - 2012